Molecular and Cellular Pathobiology Oncogenic KRAS Confers Chemoresistance by Upregulating NRF2

نویسندگان

  • Shasha Tao
  • Shue Wang
  • Seyed Javad Moghaddam
  • Aikseng Ooi
  • Eli Chapman
  • Pak K. Wong
  • Donna D. Zhang
چکیده

Oncogenic KRAS mutations found in 20% to 30% of all non–small cell lung cancers (NSCLC) are associated with chemoresistance and poor prognosis. Here we demonstrate that activation of the cell protective stress response gene NRF2 by KRAS is responsible for its ability to promote drug resistance. RNAi-mediated silencing of NRF2 was sufficient to reverse resistance to cisplatin elicited by ectopic expression of oncogenic KRAS in NSCLC cells. Mechanistically, KRAS increased NRF2 gene transcription through a TPA response element (TRE) located in a regulatory region in exon 1 of NRF2. In a mouse model of mutant KrasG12Dinduced lung cancer, we found that suppressing the NRF2 pathway with the chemical inhibitor brusatol enhanced the antitumor efficacy of cisplatin. Cotreatment reduced tumor burden and improved survival. Our findings illuminate the mechanistic details of KRAS-mediated drug resistance and provide a preclinical rationale to improve the management of lung tumors harboring KRAS mutations with NRF2 pathway inhibitors. Cancer Res; 74(24); 7430–41. 2014 AACR.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The impact of miRNA-based molecular diagnostics and treatment of NRF2-stabilized tumors.

UNLABELLED NF-E2-related factor 2 (NRF2) is a master transcriptional regulator that integrates cellular stress responses and is negatively regulated by Kelch-like ECH-associated protein 1 (KEAP1) at the posttranslational level. In human cancers, aberrantly stabilized NRF2, either by mutation of NRF2 or KEAP1, plays a vital role in chemoresistance and tumor cell growth through the transcriptiona...

متن کامل

Cancer Cell Growth Is Differentially Affected by Constitutive Activation of NRF2 by KEAP1 Deletion and Pharmacological Activation of NRF2 by the Synthetic Triterpenoid, RTA 405

Synthetic triterpenoids are antioxidant inflammation modulators (AIMs) that exhibit broad anticancer activity. AIMs bind to KEAP1 and inhibit its ability to promote NRF2 degradation. As a result, NRF2 increases transcription of genes that restore redox balance and reduce inflammation. AIMs inhibit tumor growth and metastasis by increasing NRF2 activity in the tumor microenvironment and by modul...

متن کامل

High levels of Nrf2 determine chemoresistance in type II endometrial cancer.

Type II endometrial cancer, which mainly presents as serous and clear cell types, has proved to be the most malignant and recurrent carcinoma among various female genital malignancies. The transcription factor Nrf2 was first described as having chemopreventive activity. Activation of the Nrf2-mediated cellular defense response protects cells against the toxic and carcinogenic effects of environ...

متن کامل

Nrf2-ARE stress response mechanism: a control point in oxidative stress-mediated dysfunctions and chronic inflammatory diseases.

Nrf2, a redox sensitive transcription factor, plays a pivotal role in redox homeostasis during oxidative stress. Nrf2 is sequestered in cytosol by an inhibitory protein Keap1 which causes its proteasomal degradation. In response to electrophilic and oxidative stress, Nrf2 is activated, translocates to nucleus, binds to antioxidant response element (ARE), thus upregulates a battery of antioxidan...

متن کامل

Mutant p53 confers chemoresistance in non-small cell lung cancer by upregulating Nrf2

Nrf2 is a key transcription factor for genes coding for antioxidants, detoxification enzymes, and multiple drug resistance and it also confers resistance to anticancer drugs. Here, we hypothesized that mutant p53 could upregulate Nrf2 expression at the transcriptional level, thereby conferring cisplatin resistance in non-small cell lung cancer (NSCLC). Luciferase reporter assays and real-time P...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014